

Da matriz ao terminado:

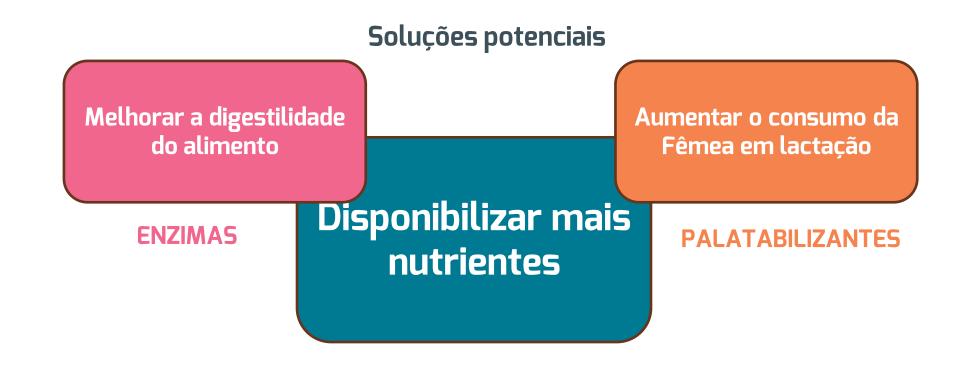
Nutrição com foco em

DIGESTIBILIDADE DE NUTRIENTES

DESAFIOS

- Melhoramento genético contínuo, fêmeas:
 - maiores,
 - mais magras, com menor reserva de gordura
 - mais prolíficas

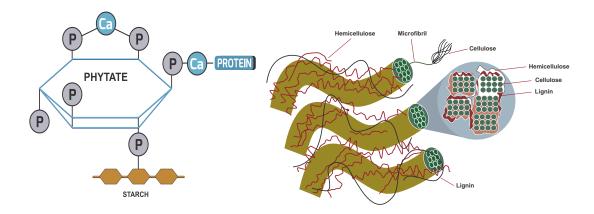
- Maior necessidade de nutrientes para a fêmea:
 - Para seu crescimento (primíperas)
 - Para satisfazer as necessidades nutricionais da leitegada (leite)


- Baixo consumo de ração, devido à:
 - Genética
 - Escore corporal
 - Estresse
 - Ambiente
 - Ordem de parto (primiparas)

- Balanço energético negativo aumento da mobilização corporal:
 - Condição corporal pós desmame:
 - Problemas de Reprodução subsequentes
 - Longevidade da reprodutoras (rentabiliidade)

Estratégias para disponibilizar mais nutrientes

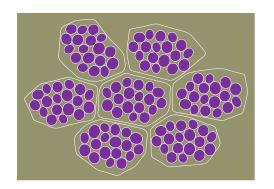
Estratégias com aditivos para disponibilizar mais nutrientes para as matrizes


FRAÇÃO INDIGESTÍVEL DA RAÇÃO

Substratos que os animais não digerem por não produzirem as enzimas necessárias

Substratos com propriedades antinutricionais

Fatores antitripsina
Fatores alergênicos
Amido resistente


Fitato 1
Paredes celulares
(PNAs) 2

Substratos que os animais podem digerir porém não estão acessíveis

Amido Proteina Lipídeos

Minerais

Enzimas carboidrases funcionam para matrizes suinas?

Meta-análise: Perda de peso após lactação

Reducing BW loss during lactation in sows: a meta-analysis on the use of a nonstarch polysaccharide-hydrolyzing enzyme supplement

Pierre Cozannet,*,1 Peadar G. Lawlor,† Pascal Leterme,‡ Estelle Devillard,* Pierre-Andre Geraert,§ Friedrich Rouffineau,* and Aurélie Preynat*

*ADISSEO France SAS, Rue Marcel Lingot, Commentry 03600, France; †Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co Cork, Ireland; †Bunge Limited, White Plains, NY; and \$ADISSEO France SAS, 42 Avenue Aristide Briand, Antony 92160, France

Meta - análise: Perda de peso após lactação

6 ensaios durante o período de lactação

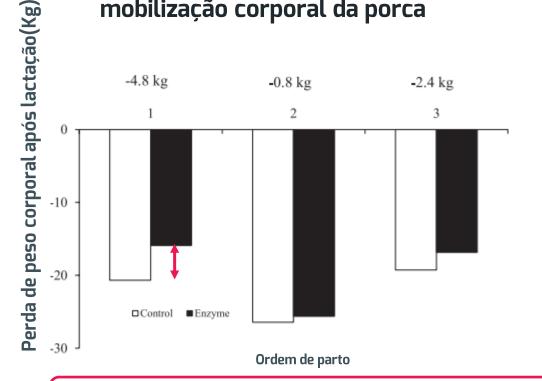
	Experimental facilities	Diets	Sows/ treatment	Feeding mode	Duration
1	Maple Leaf (Canada)	55% Corn 25% SBM	65, individual	Pellets: ad libitum	19 days
2	Prairie Swine Center (Canada)	30/25% barley/wheat 25% SBM	50, individual	Mash: 2.5kg prior to farrowing; ad libitum	21 days
3	Prairie Swine Center (Canada)	50/27% barley/wheat 25% SBM	25, individual	Mash : adaptation 1sem before farrowing	21 days
4	University of Santa Maria (Brazil)	53% <i>C</i> orn 29% SBM	12 rep. × 4 sows	Ad lib	21 days
5	University of animal husbandry (Serbia)	64/10% Corn/Byprod. 25% SBM	10, individual	Ad lib post farrowing	34 days
6	Primex (France)	34/25% wheat/barley	60, individual	Progressively ad lib.	28 days

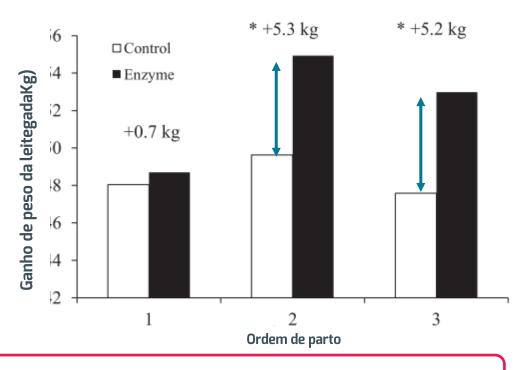
Cozannet et al., 2018

Meta - análise: Perda de peso após lactação

	Ensaios	Peso corporal ao parto (kg)	Peso corporal ao desmame (kg)	Alterações de peso(kg)	Ganho (kg)
1	Controle Enzima	229.3 219.2	217.6 210.0	-11.7 -9.2	2.5
2	Controle Enzima	263.9 262.6	260.3 263.2	-3.7 +0.6	4.3
3	Controle Enzima	280.0 288.0	256.2 265.9	-23.8 -22.1	1.7
4	Controle Enzima	272.8 264.3	249.3 244.7	-23.5 -19.6	3.9
5	Controle Enzima	210.0 209.6	186.7 191.7	-23.3 -17.9	5.4
6	Controle Enzima	253.0 255.0	227.0 231.0	-27 -24	3.0

Adaptado de Cozannet et al., 2018


Em média 20% a menos de perda de peso com uso de enzimas na gestação/lactação


Meta - análise: Perda de peso após lactação

Cozannet et al., 2018

Interação de ENZIMAS e ordem de parto no ganho de peso da leitegada e mobilização corporal da porca

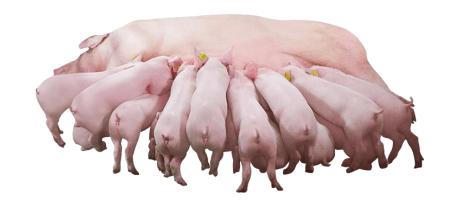
Primíparas

redução da mobilização corporal do que para a maior produção leite.

Multíparas peso da leitegada.

utilizaram para a produção de leite e consequentemente, para o aumento do

Experimento em granja comercial: Fêmeas alimentadas com Rovabio[®] Advance em dietas com Milho e Soja

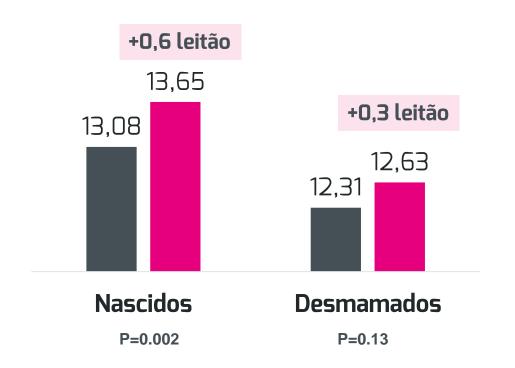


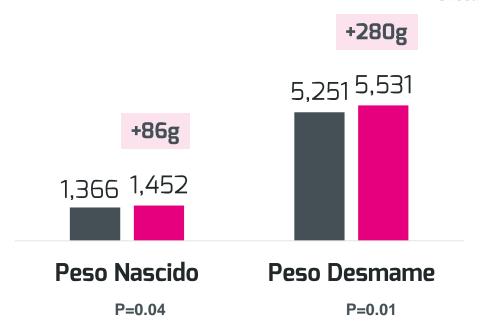
P16-U1 Pelissari et al., 2016 (USP)

Complexo enzimático adicionado *on top* no **terço final da gestação até 21 de lactação**

Dieta Controle: Níveis industriais brasileiros 120 fêmeas / tratamento

	Gestação	Lactação
Milho	65,50	61,10
Farelo de soja	16,00	27,00
Casca de soja	15,00	1,00
Cana de açúcar	-	5,00
Óleo de soja	-	2,00
Energia metabolizável (kcal/kg)	3.007	3.353
Proteína bruta (%)	14,42	19,28
Lisina dig. (%)	0,64	1,06



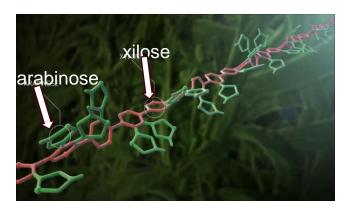

Fêmeas alimentadas com Rovabio[®] Advance em dietas de Milho e Soja

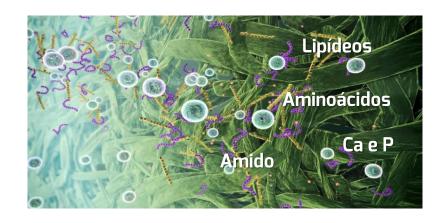
P16-U1 Pelissari et al., 2016

Fêmeas alimentadas com Rovabio[®] Advance em dietas de Milho e Soja

P16-01 Pelissari et al., 2016

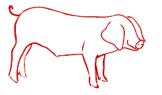
- ✓ Leitegadas mais pesadas ao nascimento e desmame
- ✓ Maior GPD em leitões nascidos de mães recebendo enzimas (melhor aporte nutricional)


Como enzimas carboidrases podem melhorar a digestibilidade

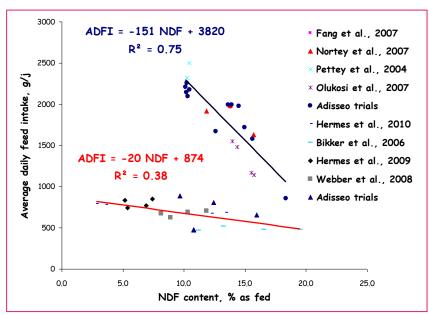

de nutrientes?

1. Paredes celulares diminuem o acesso aos nutrientes da dieta

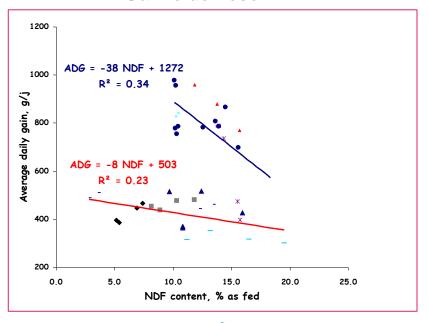
2. Enzimas desramificadoras eliminam as arabinoses da cadeia principal de xilose, potencializando a ação das xilanases em degradar Arabinoxilanos (60% da parede celular)



3. Nutrientes enjaulados são liberados para digestão e absorção: AAs, amido, lipídeos, minerais.



Meta-análise: Fibra (FDN) reduz perfomance de suinos


Conteúdo de fibra afeta o consumo e ganho de peso em dietas iso EL & iso AA dig

Consumo

suinos= 40% leitões= 15%

Ganho de Peso

Suinos= 21% Leitões= 9%

Enzimas carboidrases funcionam para suinos em crescimento?

	Digestiilidade ileal			Dige	Digestibilidade fecal			Estatística		
	Enz	ima	M 0/	Enzima		V 0/	lleal	F	Inton	
	-	+	Var, %	-	+	Var, %	vs, Fecal	Enz,	Inter	
Digestibilidade	e (n = 3	19; 27 d	ietas)							
Matéria seca	65,0	68,1	4,8	80,0	82,0	2,5	<0,01	<0,01	0,50	
Amido	92,3	96,7	4,8	96,8	99,0	2,2	0,23	0,21	0,65	
Gordura	55,8	56,8	1,8	71,8	74,0	3,0	0,05	0,72	0,86	
Nitrogênio	70,1	74,1	5,7	80,7	82,9	2,7	<0,01	<0,01	0,31	
FDN	4,5	14,2	212,9	45,5	50,8	11,6	<0,01	<0,01	0,32	
E Bruta	66,3	69,6	5,0	79,0	81,7	3,5	<0,01	<0,01	0,80	

Ação localizada no setor inicial do trato digestivo, afetando vários nutrientes.

according covariance analysis (n=416) collection level (n=2), enzyme preparation (n=2) and source (n=10) effects and control digestibility value (%) as covariable

Literature review; n=416: Li et al., 1996; Yin et al., 2000; Yin et al., 2001; Omogbenigun et al., 2004; Nortey et al., 2007; Olukosi et al. 2007; Ji et al., 2008; Nortey et al., 2008; Reilly et al., 2010.

O efeito enzimático é mais sensível no sistema NE

2 dietas * 2 enzimas (com/sem) x 20 suinos (5 suinos por tratamento). Medição realizada por calorimetria indireta (câmaras respiratórias)

($\langle \langle \rangle \rangle$
(1)	\ <u> </u>
~	0,0

-		-							
Enzyme	-	+	ETR ¹	P value					
Observation, n	10	10							
Adjusted data, MJ/j/kg BV	$V^{0.60}$								
For the same ME intak									
Heat production	1193	1175	33	<0.001					
Retained energy	1138	1157	33	<0.001					
Ratio, %									
DE/GE	86.4	87.2	1	0.11					
ME/DE	96.0	96.3	0.3	0.18					
NE/ME	77.3	78.8	0.8	0.13					
Energy content, MJ/kg DM									
DE	16.01	=63 Kcal 16.16	0.18	0.12					
ME	15.40	15.51	0.17	0.18					
NE	11.91	12,20	0.11	<0.001					

0.29=121 Kcal

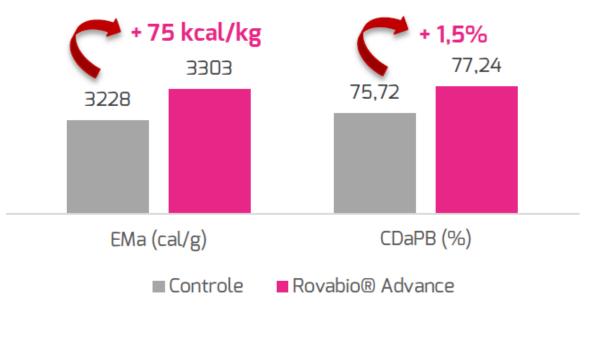
I-DIGESTIBIIDADE DE NUTRIENTES EM SUÍNOS

Experimentos feitos no Brasil

2 Dietas: Milho x DDGs Com x Sem Carboidrases

8 repetições/trat

4 períodos de 2 animais

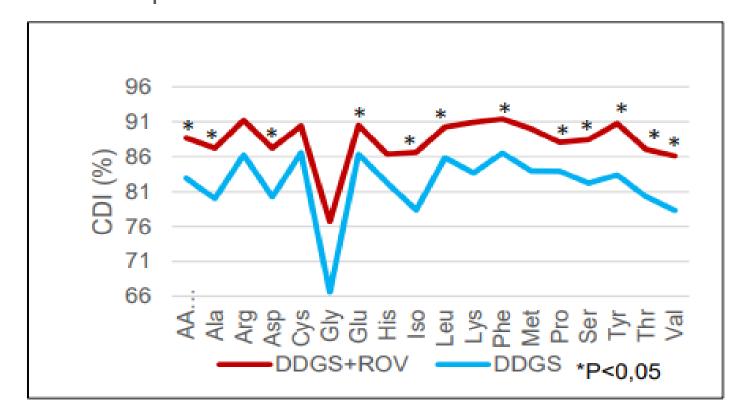

100	a)

Suínos Crescimento/Terminação 20.13-LATAM

Motta, et al., 2022

Ingredientes	MFS	DDGS
Milho (7,8%)	63,69	48,78
Soja Farelo (46%)	33,18	28,16
DDGS milho (42%)	0,000	20,00
Calcário	1,187	1,201
Fosfato bicalcico	0,920	0,980
Cloreto de sódio	0,365	0,365
L-Lisina HCL	0,178	0,203
L-Treonina	0,072	0,000
DL-Metionina	0,084	0,000
L-Triptofano	0,024	0,000
Celite 1%	0,100	0,100
Amido ou Rovabio®	0,050	0,050
Premix Mineral Salus ¹	0,100	0,100
Premix Vitaminico OVN ²	0,050	0,050
Total	100,0	100,0
20.13 - LATAM		

Experimentos feitos no Brasil


II- COEFICIENTE DE DIGESTIBILIDADE ILEAL EM SUINOS

No.

Suínos Crescimento/Terminação 175AO-101

Fase de crescimento=88 à 112 dias: 4 tratamentos x 12 repetições x 3 machos castrados= 15% DDGS Fase de terminação=135 à 154 dias: 4 tratamentos x 11 repetições x 2 machos castrados= 20% DDGS 2 dietas com e sem complexo multicarboidrase

Todas as dietas com 500FTU de fitase

Experimentos feitos no Brasil

III- Efeito do uso de Rovabio® Advance reformulado a base milho e soja para suínos em crescimento e terminação

Suínos Crescimento/Terminação Prova de campo Vitagliano, 2023

3840 suinos de 64-147día	as (83 dias)
Com x Sem Carboidrases	+ 500 FTU fitase

	Dietas		Sexo		CV	Pvalor			
Ţ	Controle	Rovabio®	Fêmea	Macho	CV -	Dieta	Sexo	DxS	
GP (kg/d)	1,013	1,025	0,987b	1,051a	3,80	0,2611	<0,0001	0,3593	
CR (kg/d)	2,229	2,262	2,233	2,257	4,36	0,2245	0,2812	0,1791	
CA	2,204	2,209	2,262a	2,151b	3,23	0,8096	<0,0001	0,6797	

Matriz Aplicada

56 kcal EMA PB 0,24% Lis d. 0,013% Met 0,004% Outros AAs

USO COMBINADO DE CARBOIDRASES E FITASES EXPLORAR O SINERGISMO PARA LUCRO MÁXIMO

Carboidrases

(xilanases, β-glucanases, celulases, arabinofuranosides, proteases, mananases)

+ Fitase em superdosing (1.000 FTUs)

de *Buttiauxella* expressa em*Trichoderma reesei*

Experimentos Brasil

IV- Efeito do uso de Rovabio® Advance Phy em dietas base milho e soja e com diferentes níveis nutricionais para suínos em crescimento e terminação

Suínos Crescimento/Terminação

195A0-101

3 níveis nutricionais x 2 Rovabio® (com ou sem) x 8 repetições x 10 suínos

Tratamento	Rovabio® Advance PHY	Energia Líquida	Lisina digestível
T1. Baixo	-	-60 kcal/kg	-2%
T2. Baixo+Rov	Sim	-60 kcal/kg	-2%
T3. TBAS 17	_	TBAS	TBAS
T4. TBAS 17+Rov	Sim	TBAS	TBAS
T5. Alto	_	+60 kcal/kg	+2%
T6. Alto+Rov	Sim	+60 kcal/kg	+2%

Rovabio Advance Phy, formulado com matriz de 500FTU

Experimentos
feitos no Brasil

V-Efeito do uso de Rovabio® Advance Phy em dietas base milho e soja e com diferentes níveis nutricionais para suínos em crescimento e terminação

Suínos Crescimento/Terminação

DESEMPENHO de suínos nas fases de crescimento e terminação, após 72 dias de experimento

	Níveis			Rovab	io [®] Phy	CV	Pvalor		
	Baixo	TBAS(*)	Alto	Sem	Com	(%)	Nível	Rovabio	NxR
GPD (kg)	1,068	1,092	1,087	1,077	1,088	3,67	0,164	0,283	0,987
CRD (kg)	2,995 a	2,968 ab	2,906 b	2,957	2,956	8,3	0,032	0,974	0,313
CA	2,802	2,718	2,670	2,744	2,716	5,92	<,0001	0,023	0,011

Desdobramento da interação para conversão alimentar

Rovabio [®] Phy	Níveis			Direlar
	Baixo	TBAS(*)	Alto	- Pvalor
Sem	2,788	2,740	2,703	0,001
Com	2,815	2,695	2,637	<,0001
Pvalor	0,248	0,036	0,001	•

Citado por Cantarelli, 2024

USO DE FITASES SUPERDOSE EM SUINOS

ÁGIL

Degrada <u>fitato</u> en hasta 40 minutos, combatiendo el efecto anti-nutricional.

PODEROSA

Capacidad de liberar altos niveles de P a partir del <u>fitato</u>.

TERMOESTABLE

Flexibilidad de aplicación en situaciones de grandes desafíos. Fitasa líquida en mezclador.

Rovabio PhyPlus: Leitões

Jlali et al., 2022 22CERNPHY01

192 leitões (M/H) PVI = 8.7 kgs 47 dias (28-75d)

Adaptação: 28-32d

Pós desmame 1: 33-47d **Pós desmame 2:** 48-76 d

• **T1:** Dieta basal (DB; -0.12 Pdig, -0.12 Ca)

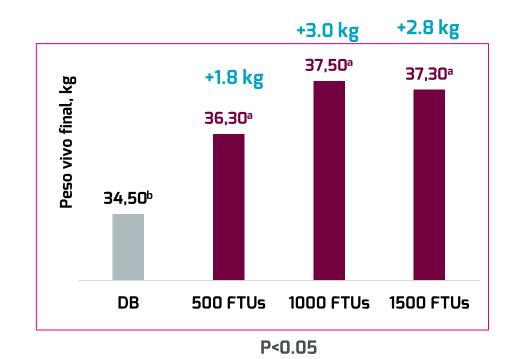
T2: DB + 500 FTUs/kg PhyPlus

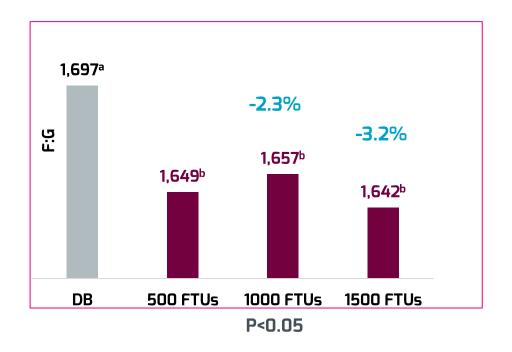
T2: DB + 1000 FTUs/kg PhyPlus

T2: DB + 1500 FTUs/kg PhyPlus

Parâmetros: desempenho, digestibilidade

Nutriente	Dieta Basal	
EL, kcal/kg	2,415	
Proteína, %	19,0	
dLys, %	1.23	
P total, %	0.45	
P fítico, %	0.22	
P dig, %	0.21	
Ca, %	0.58	

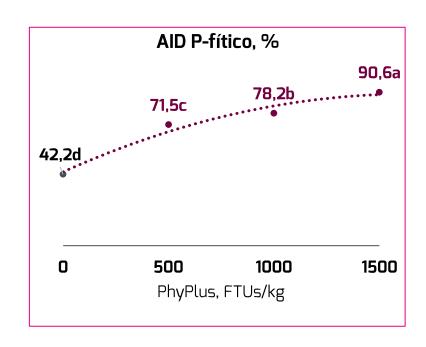


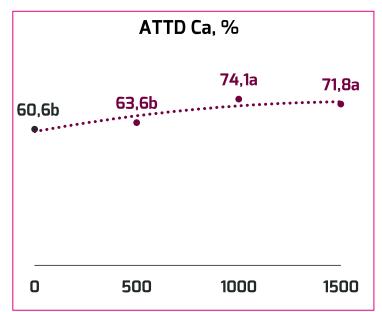


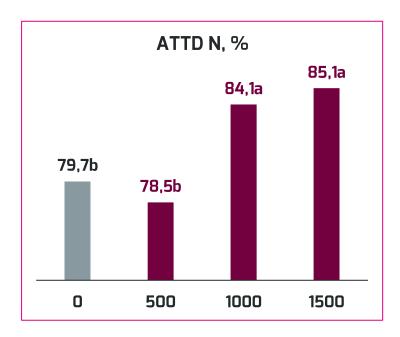
Rovabio PhyPlus: Desempenho de leitões

Jlali et al., 2022

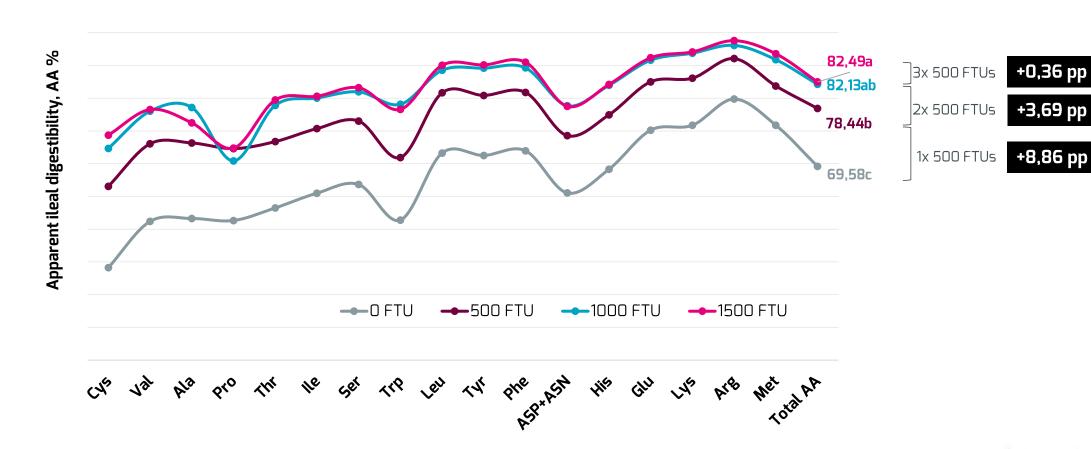
500 FTUs foi suficiente para recuperar desempenho em dietas com -0.12% P dig e Ca.



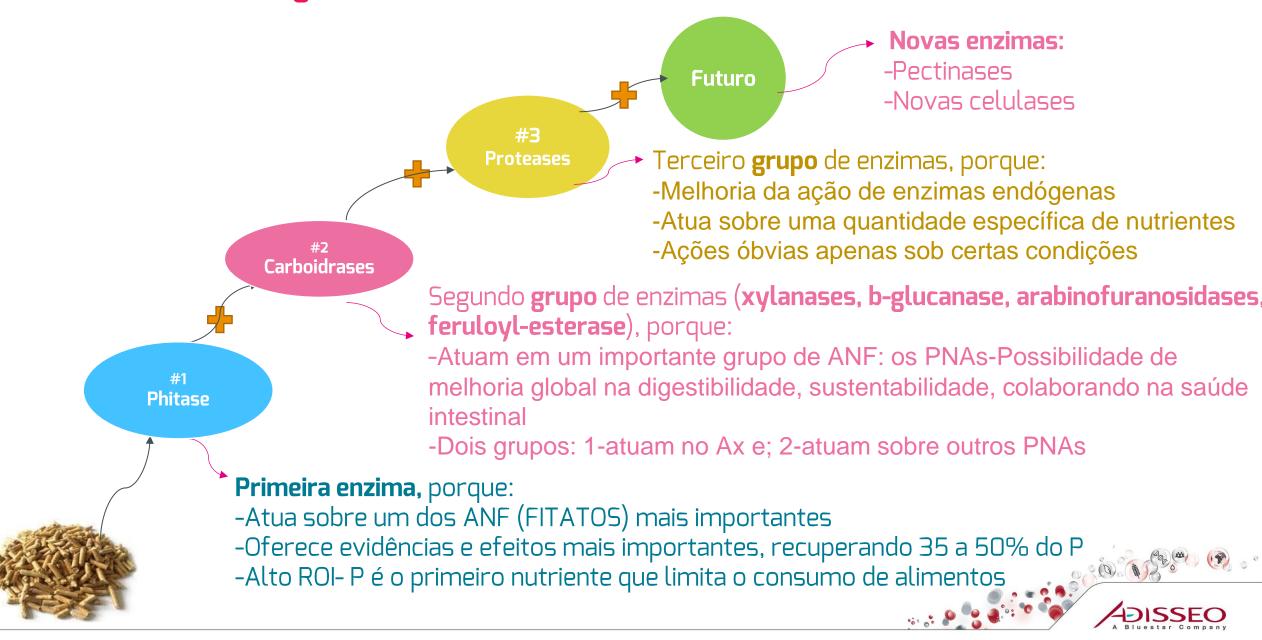



Rovabio PhyPlus: Digestibilidade em leitões

Jlali et al., 2022


1000 FTUs melhor dose para Ca e N, enquanto 1500 FTUs garantiram melhor P-fítico AID.

Rovabio PhyPlus: Digestibilidade leitões



Nossa visão do uso estratégico de enzimas

FEEDASE

Uso estratégico de enzimas

Conclusões

- As matrizes necessitam de um aporte de nutrientes para reduzir os efeitos do balanço energético negativo, que pode ser feito aumentando a digestibilidade da ração, com o uso de enzimas.
- Complexo multienzimático com enzimas desramificadoras, disponibilizam mais nutrientes, melhorando a digestibilidade da ração.
- Há muitas evidências técnicas sobre a viabilidade do uso combinado de enzimas (conceito Feedase), em todas as fases de produção de suinos.

Obrigada pela atenção!

Adriana Berti Toscan

Adriana.toscan@adisseo.com
+55 41 992333847

3rd edition – 2024-2027

Adisseo Research Grant

to address feed industry challenges through collaborative research programs